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Fluorescent detection and quantification of heavy-metal ions is A -
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of great interest because of their environmental and biological _..f ® "
importance. For most biological samples, many different metals 2" ;ﬁmt‘:;l‘;““mm D \:‘""“":T::z o
are present in low concentrations in complex matrices, increasing
the need for highly sensitive, selective, and robust sensors that are
water compatible and give fast responses. Many small molecules
have been designed with some success but for a limited number of
metals! Most small molecules suffer from low selectivity and
sensitivity as well as low water solubility. As for Figa number
of small molecule fluorescent sensors have been designed, but only

very few work in watei'91 have turn on respongg; and have i o o o
relatively figh sensiivyl¥ and there are even less ratometrc (2, (9APene excmeris nseied nide 2 uplex DA contaning
Hg?* sensors reporteld:* The selectivities of these small molecule-  emission from the excimer at 480 nm is expected. (B) The binding &f Hg
based Hg" binders are still far less than that exhibited by proteins to MerR induces DNA distortion and causes emission at 380 nm from the
such as MerR (at least 100-fold toward #gver any other metal monomers.

ion). To overcome these limitations the use of target specific
proteins as biosensors is a promising apprdaahd this study A
intends to combine all the merits mentioned above.

While most metals are toxic at high concentrations, some are l
needed for various life processes, and therefore nature has evolved
a number of tight regulatory proteins, which are a good platform
to achieve high selectivity and sensitivity in water.

MerR family proteins are transcriptional regulators that tightly
control the efflux systems of a number of metals such a3"Hg /
P, Cd*", zZn?*, Cu*, and Ag- and a number of organic PN \\
moleculests MerR proteins exist as stable dimers in solution and ' ' )
bind sequence specifically to the corresponding promoter sequences . . =
in the absence of their specific targets. When a MerR-type protein 400 Wavefg:gm (om) 600
recognizes its specific target metal ion or organic molecule the g c
protein causes a distortion of the bound duplex DNA. Specifically, 500 1
the central base pairs of the palindromic sequence of the promoter ;sonj - 8
DNA are broken, and the duplex DNA is untwisted. This action §;$|
sends the signal for transcriptional initiatibhIn previous work, E"zml
we have taken advantage of this DNA distortion mechanism and ~ mﬂji
converted different members of the MerR family proteins into ’, 0a 08 12 0 04 08 12
fluorescent reporters, such as MerR for24gCueR for Cd, and Ha (1) (uht) Ha (1) ()

PbrR for PB*.8 A fluorescent DNA base analogue, pyrrolo-C, was  Figure 2. (A) Fluorescence response of MerR (dimeBNA complex (1
placed into the middle of the protein-binding sequence. The uM) to the addition of H§" at 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
fluorescence of pyrrolo-C is quenched when base paired with G in 1.0, 1.1, and 1.2¢M. The measurements were performed at room

. . Lo temperature in a nitrogen-purge buffer containing 10 mM Tris-HCI (pH
a duplex DNA. DNA distortion, caused by target binding to the 7.4), 100 mM potassium glutamate, 2 mM Mg@ind 5% glycerol. (B)

MerR proteins, restores the fluorescence of pyrrolo-C. Fluorescence intensity as a function of¥igoncentration. (C) Ratiometric
The pyrrolo-based fluorescent reporter has disadvantages: (i)calibration curve finalssdl4go ratio over the initiall s/l g0 as a function of

pyrrolo-C has a low quantum vyield (0.07), (ii) the system has a Hg*" concentration.

high background and a relatively low fluorescence increase upon

DNA distortion, and (iii) the fluorescent response is not ratiometric. excited-state dimer, termed excimer, resulting in a large stock shift
We hope to overcome these limitations with a new design. In of ~100 nm. The pyrene excimer is very sensitive to the distance
addition, we also wish to develop simple and reliable methods that between and the geometry of two close pyrene units, and the
can readily report protein binding, dissociation, and distortion of response is ratiometric, making this a highly attractive method to
DNA. We decided to rely on dyedye interactions in the duplex  probe biological interaction®. Furthermore, pyrene has been
DNA to report protein-DNA interactions’ We chose pyrene as  incorporated into DNA before, and DNA has proven an excellent
the dye because it has a high quantum yield (0.65) and forms anscaffold to bring dyes close to each other.
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18 4 Cd#" led to some signal change that is consistent with the native
property of MerR (Figure S2f
In summary, pyrene excimer incorporated into duplex DNA is
21 pM an excellent probe to study proteiDNA interactions. The intense
010 uM emission and ratiometric response provide high sensitivity and
robustness of the probe. In the current study, by using the pyrene
Y excimer strategy we can convert the DNA complex of the MerR
Wersknaitinmh protein into a ratiometric biosensor for Hg The basis for a highly
sensitive, selective, ratiometric, water compatible sensor with fast
response is demonstrated. Potentially, the same approach can be
Free  Hg(l)  Pb(ll) Cofll) Cd(}  Zn{ll) applied to other members of this protein family to construct sensitive

Figure 3. (A) Ratiometric response for different metal ions at 1 and 10 and selective biosensors for other metal ions and organic molecules.
uM. The inset shows the fluorescence response of MerR (dimer) DNA
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